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ML-based Control

Machine learning-enabled controllers can accomplish complex and difficult control
tasks!
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Control Design Examples

Classical controllers are built deductively from requirements, while ML control
requirements are inductively determined after construction.

Classical PID Control System ML-based Control System
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Deductive: we pick PID coefficients construct a Inductive: exact requirements and
controller that directly satisfy a set of control performance are only determined after
and mission requirements construction
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Why Formalization Matters for RL Systems

RL Agents are trained to maximize rewards, but:

Rewards may not capture desired behaviors
Agents may exploit reward loopholes

“That’s not what | meant!”

1?7

Takeaway

Agents may succeed at the task but fail at the mission.

We need a structured way to express requirements.
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What is Sighal Temporal Logic (STL)?

Human Readable Requirements

.
"

“When the agent is engaged in a turn, the
maximum speed should be kept low.”

Signal Temporal Logic Specifications

o1 = G[o,t](W’ >1=|v] <)
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Q-Learning for Robust Satisfaction of Signal Temporal Logic
Specifications

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta

Abstract—This paper addresses the problem of learning
optimal policies for satisfying signal temporal logic (STL)
specifications by agents with unknown stochastic dynamics.
The system is modeled as a Markov decision process, in
which the states represent partitions of a continuous space
and the transition probabilities are unknown. We formulate
two synthesis problems where the d md STL specification is
enforced by the i and the
expected robustness degree, that is, a measure quantifying the
quality of satisfaction. We discuss that Q-learning is not directly
applicable to these problems because, based on the quantitative
semantics of STL, the probability n and expected
robustness degree are not in the standard objective form of Q-
learning. To resolve this issue, we propose an approximation of
STL synthesis problems that can be solved via Q-learning, and
we derive some performance bounds for the policies obtained
by the approximate approach. The performance of the proposed
method is demonstrated via simulations.

I. INTRODUCTION

In contrast to existing works on reinforcement learning
using propositional temporal logic, we consider signal tem-
poral logic (STL), a rich predicate logic that can be used
to describe tasks involving bounds on physical parameters
and time intervals [10]. An example STL specification is
“Within 1 seconds, a region in which y is less than p;
is reached, and regions in which y is larger than p, are
avoided for r, seconds.” STL is also endowed with a metric
called robustness degree that quantifies how strongly a given
trajectory satisfies an STL formula as a real number rather
than just providing a yes or no answer [11], [10]. This
measure enables the use of optimization methods to solve
inference (e.g., [15], [18]) or formal synthesis problems (e.g.,
[21]) involving STL

In this paper, we formulate two problems that enforce a
desired STL by maximizing 1) the i
of satisfaction and 2) the expected robustness degree. One
of the difficulties in solving these problems is the history-

This paper addresses the problem of 2 a system
with unknown, stochastic dynamics to achieve a complex,
time-sensitive task. An example is controlling a noisy aerial
vehicle with partially known dynamics to visit a pre-specified
set of regions in some desired order while avoiding hazardous
areas. We consider tasks given in terms of temporal logic
(TL) [4] that can be used to reason about how the state
of a system evolves over time. Recently, there has been
a great interest in control synthesis with TL specifications
(e.g.. [2], [3], [8], [22], [19], [12]). When a stochastic
dynamical model is known, there exist algorithms to find
control policies for maximizing the probability of achieving

eps e of the For instance, if the specifi-
cation requires visiting region A before region B, whether
or not the system should move towards region B depends
on whether or not it has previously visited region A. For
LTL formulae with time-abstract semantics, this history-
dependence can be broken by translating the formula to a de-
terministic Rabin automaton, i.e., a model that automatically
takes care of the history-dependent “book-keeping”, e
[22]. In the case of STL, such a construction is difficult due
to the time-bounded semantics. We circumvent this problem
by defining a fragment of STL such that the progress towards

STL Specifications — transform to Q-learning reward — maximize robustness
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Structured Reward Shaping using
Signal Temporal Logic specifications

Anand Balakrishnan, Jyotirmoy V. Deshmukh

Abstract—Deep reinforcement learning has become a popular
technique to train autonomous agents to learn control policies
that enable them to accomplish complex tasks in uncertain envi-
ronments. A key component of an RL algorithm is the definition
of a reward function that maps each state and an action that
can be taken in that state to some real-valued reward. Typic:
reward functions informally capture an implicit (albeit vague)
specification on the desired behavior of the agent. In this paper,
we propose the use of the logical formalism of Signal Temporal
Logic (STL) as a formal specification for the desired behaviors of
the agent. Furthermore, we propose algorithms to locally shape
cach state with the goal of satisfying the high-level
STL specification. We demonstrate our technique on two case
studies, a cart-pole balancing problem with a discrete action
space, and controlling the actuation of a simulated quadrotor
for point-to-point movement.

The proposed framework is agnostic to any specific RL
algorithm, as locally shaped rewards can be easily used in
concert with any deep RL algorithm.

I. INTRODUCTION

Reinforcement learning (RL) combined with deep learning
has been incredibly successful in solving highly compl
problems in domains with well-defined reward functions, like
maximizing Atari games’ high scores [1] and complex cyber-
physical problems such as learning gait in simulated bi-pedal
robots [2]. To a large extent, this success can be attributed
to the ability of deep neural networks to approximate highly
non-linear functions that take raw data, like pixel data in [1]
and proprioceptive sensor data in [2], as input and output the
expected total reward from performing a given action at a

and the study of minimizing reward hacking by designing
better reward functions is called reward shaping [6).

Meanwhile, research on safety and verification of cyber-
physical systems (CPS) has extensively used logical for-
malisms based on Temporal Logics to define safety spec-
ifications. In particular, Signal Temporal Logic (STL) has
seen considerable use to define temporal properties of signals
in various cyber-physical system applications [7]-[9]. More-
over, there has been work to furnish STL with quantitative
semantics, which allow us to quantify how robustly a signal
satisfies a given property. The robustness of a signal with
respect to an STL formula can be viewed as the distance
of the signal to the set of signals satisfying the given
formula [10], [11].

Seminal work in [12] explores the idea of using the robust
satisfaction semantics of STL to define reward functions
for a reinforcement learning procedure. Similar ideas were
extended by to a related logic for RL-based control design
for Markov Decision Processes (MDP) in [13]. In this paper,
we identify certain shortcomings of the previous approaches;
in particular, we observe that using reward functions based on
traditional definitions of robustness are global, i.e. a positive
(resp. negative) robustness value translates into a positive
(resp. negative) reward that influences all states encountered
during a learning episode equally. To address this issue, we
adapt the quantitative semantics of STL to be defined over
partial signal traces. A partial signal trace is a bounded-
length segment of the state trajectory of the system being

Our Approach

STL Specifications — local robustness — hyper-local rewards — better RL training
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What is unique about our approach?

% Collaborative tuning: Frequent check-ins with operators to refine acceptance

tolerance
I\ Avoid Overfitting: No brittle, hyper-local reward functions

€@ No Demos? No problem: Learn without expert trajectories or imitation learning

¢ Black-box controller compatible: Can’t always implement formal robustness

guarantees during training
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Our Approach to Specification-Driven Iterative Design

Black-box process

Environment
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Our Approach to Specification-Driven Iterative Design

Black-box process

Human-readable
system requirements

Design input

Environment
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Our Approach to Specification-Driven Iterative Design

Black-box process

evaluation
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Our Approach to Specification-Driven Iterative Design

Black-box process

evaluation
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Human-refa\dable —'l STL formulae
system requirements

Design input

Environment
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Our Approach to Specification-Driven Iterative Design

Black-box process

evaluation mining: TeLEx

A 'y
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templates

Human-refa\dable —'l STL formulae
system requirements

Design input

Environment

Telex: S. Jha et al. (2019)
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Our Approach to Specification-Driven Iterative Design

Black-box process

evaluation mining: TeLEx
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system requirements | STL formulae |——

Design input

Environment

Telex: S. Jha et al. (2019)
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Our Approach to Specification-Driven Iterative Design

Redesign
process

Black-box process

evaluation mining: TeLEx
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Our Approach to Specification-Driven Iterative Design

Redesign
process

Black-box process
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evaluation mining: TeLEx
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Our Approach to Specification-Driven Iterative Design

l ITERATE |«
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I l
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Training in Simulation
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Challenges With Our RL Training

Reward Term

Checkpoint Reward

Speed Reward
Road Reward

Time Reward

Classic Controllers vs Black-Box Controllers

Behavior encouraged

Forward progress around
the track

Fast driving
Staying on the track

Quick mission completion

STL Specifications in RL
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Mario goes off-road despite
an off-road penalty!

2o %
eds —#k— Agent trajectory
0’: o %

i Direction of travel

Our Approach Ongoing Work



Agent Performance Evaluation

Trained on the same mission and environment as
evaluated

Control is stable and continuously advancing
towards the goal.

Classic Controllers vs Black-Box Controllers

STL Specifications in RL
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Mario finishes successfully

on the road!
“\. + Agent trajectory
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Pre = ProceSSi ng The Data Mario starts turning here.

E
‘s c 3500
From raw position traces (x, vy, t), £
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velocity, %% 20 40 60 80
acceleration, s 0 —
and heading. £ -0
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These derived state quantities £ A
are essential for controller logic § 5 ;' '«‘
& evaluating Signal Temporal Logic g o S
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Mining Requirement-based Properties in TeLEx

“‘When the agent is engaged in a turn, the maximum speed should be kept low.”

G[0,72] ( ((phidot > 0.5) | (phidot < -0.5)) — speed < a? 0;80) . 5 5
Synthesized STL Formula: G[0.0,72.0] (((phidot > 0.5) | (phidot < -0.5)) - ( speed < q)’]' What 15 the maximum
44.16) speed when engaged in a turn?
Theta Optimal Value: 0.027
Optimization Time: 0.046 — 44.16 m/S
Test result of synthesized STL on each trace: [Truel]
Robustness Metric Value: [0.004]

TeLEx also provides robustness!

| EvaLUATION <> This tells us how well our specifications were satisfied.

I

STL
REQUIREMENTS
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Mining Requirement-based Properties in TeLEx Part 2

F[0, a? 1;70] (speed > 20) . . 2
Synthesized STL formula: F[0.032.005] (speed > 20.0) (DZ' When dOeS the VehICle reaCh necessary Speed'

Theta Optimal Value: 0.2501 — att =32 sec
Optimization time: 0.0022

Gla? 0;50, b? 50;72] (phidot < -0.5)

Synthesized STL formula: GA2.001, 64.999] (phidot < -0.5) M3 how long is the vehicle engaged in the turn?
Theta Optimal Value: 0.3533

R . — 23 sec
Optimization time: 0.0200

- EVALUATION <>

STL
REQUIREMENTS
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pPSTL Mined Temporal Properties

®,: what is the maximum
Gir : , speed when engaged in a
Yo : turn?

| ORCHR NN BN NS WSRO SRR (R BN N R Red line is the maximum

speed when in a turn
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pPSTL Mined Temporal Properties

<D1: what is the maximum

Gir N j speed when engaged in a
Nogo turn?
(DZ: when does the vehicle E U0ttt i S et it oA bt ettt Red line is the maximum
2 .
reach necessary speed? g speed when in a turn
(] - \
> N
Black line identifies when :
the speed reaches 20 m/s : : ' - ———
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pPSTL Mined Temporal Properties

<D1: what is the maximum

Gir N , speed when engaged in a
Nt turn?
(DZ: when does the vehicle HSFAMAEERAEAMESEMERTMAL MASEAMEELN AL Red line is the maximum
2 .
reach necessary speed? 3 af speed when in a turn
S .
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®,: how long is the vehicle engaged in the turn?

Purple lines are the correctly identified turn
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Future Work: Closing The Loop

We showed you can train an ML-enabled controller and evaluate
it’s requirements with STL. What’s next?

Redesign How to retune the reward structure?
packnoxprocess | PR
RL training ! No
| [Controlier |_7_[TSTL parameter | ¥~ What ML system properties must be true in
H evaluation mining: TeLEx T
NN-based agent i . the frameWO rk?
controller i
_________ T________a templates
e
Environmen Human-readable N o .
& mission system requirements How to reconcile competing requirements?
Design input Design input
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Key Takeaways

;7 "ﬁ’uoa"’ ‘ 70700 7

-

/“., N ;;,-

N »—;1::;,_—,;,,;'\'( SN e e e

. We integrate formal specifications into our iterative
black-box design process.

' We executed 1 loop of our iterative black-box design process.

:’ ‘ Y0000 " ‘ ro Vl

Pra— ¥ -

. We will next begin our re-design process. i b

. ,‘\ a———
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