

KRISTY SAKANO

kvsakano@umd.edu

EDUCATION

University of Maryland at College Park Ph.D. Student, Department of Computer Science Advisor: Dr. Mumu Xu, Department of Aerospace Engineering	College Park, Maryland <i>August 2023 - In Progress</i>
Georgia Institute of Technology M.S. in Computer Science, Specialization in Computational Perception & Robotics	Atlanta, Georgia <i>January 2020 - May 2023</i>
University of North Carolina at Chapel Hill B.S. in Physics, Option Astrophysics	Chapel Hill, North Carolina <i>August 2014 - May 2018</i>

RESEARCH

UMD Department of Aerospace Engineering, Xu Lab	College Park, MD
<i>Qualifying Autonomous Systems: Learning from Mario Kart for Robust Safety</i>	July 2024 - Present
· Developed a framework integrating parametric Signal Temporal Logic (pSTL) to ensure deep reinforcement learning policies comply with human-readable specifications.	
· Implemented and tested an autonomous agent in Super Mario Kart using Proximal Policy Optimization (PPO) to evaluate safety constraints in a structured driving environment.	
· Incorporated explainable AI techniques and sensitivity analysis to enhance policy transparency, bridging formal methods with data-driven learning for autonomous systems.	

WORK & INTERNSHIPS

Graduate Research Intern at START <i>June 2025 - August 2025</i>	College Park, Maryland
Summer 2025 - Conducted an independent research project analyzing the evolving threat landscape of ideologically motivated cyberattacks (hacktivism) as part of a national security internship program at the National Consortium for the Study of Terrorism and Responses to Terrorism (START)	
Operations Research Analyst at NAWCAD <i>Patuxent River, Maryland</i>	
	AI & Autonomy Applications Division <i>August 2018 - August 2024</i>
· FY19-FY24 - project lead for three internal NAWCAD autonomous systems development projects. Topics include multi-agent autonomous decision making (task allocation, cooperative search, etc), multi-domain autonomy, operations in comms denied environments, and more. Information material subject to Distribution C release.	
Research Intern at NASA Goddard <i>Greenbelt, MD</i>	Science Data Processing Branch, Code 587 <i>January 2021 - July 2021</i>
· FY21 - Collaborated with NASA researchers to develop a unique Linux build and testing platform to evaluate communications-limited deep learning algorithms on Xilinx's Zybo. Performed benchmark analysis to cross-compare the FPGA performance with other development boards and application specific integrated circuits with regards to accuracy, speed, memory usage, and performance. Trained a new classified hyperspectral dataset to develop a TFLite model integrable with the Zybo platform.	

Research Intern at NRL <i>Washington, D.C.</i>	Distributed Autonomous Systems Group, Code 5514 <i>September 2019 - December 2019</i>
· FY20 - Collaborated with NRL researchers on a cross-organizational project focused on herding of non-cooperative robots in complex environments. Simulated and experimentally validated a previously proposed approach for a pursuer-evader strategy involving navigation around convex obstacles to a goal location.	

PUBLICATIONS AND PRESENTATIONS

Publications

- **K. Sakano**, J. Mockler, A. Chen and H. Xu, "A Framework for Black-Box Controller Design to Automatically Satisfy Specifications Using Signal Temporal Logic," 2025 International Conference on Unmanned Aircraft Systems (ICUAS), Charlotte, NC, USA, 2025, pp. 587-594, doi: 10.1109/ICUAS65942.2025.11007815.
- J.S. Goodwill, J.P. MacKinnon, **K. Sakano**, C.M. Wilson (2022). Onboard hyperspectral image classification via transfer learning for communication-limited spacecraft. 2022 IEEE Aerospace Conference (AERO), 1-13
- G. Torres and **K. Sakano**, " η Geminorum: an eclipsing semiregular variable star orbited by a companion surrounded by an extended disc," Monthly Notices of the Royal Astronomical Society, vol. 516, no. 2, pp. 2514–2521, Aug. 2022, doi: 10.1093/mnras/stac2322.
- G. Arreaga, M. Creech, and **K. Sakano** (2021). Performative Analysis of Sensor Limitations in Communication Denied Environments. 2021 Military Sensing Symposium. Refereed.
- **K. Sakano** and V. Edwards. (2020). Pursuit evasion of a swarm using A* path planning. Unclassified, released under Distro A through the Naval Research Laboratory.

Presentations

· Oral Presentation, Int'l Conference on Unmanned Aircraft Systems (ICUAS)	May 2025
· Oral Presentation, NAWCAD Symposium for Emerging Professionals (NSEP)*	July 2023
· Poster Presentation, Naval Applications of Machine Learning (NAML)	February 2023
· Oral Presentation, DoD 6.1 Basic Research Conference	September 2022
· Oral Virtual Presentation, NSEP	July 2022
· Oral Virtual Presentation, NAML	February 2022
· Oral Virtual Presentation, NSEP	July 2021
· Oral Virtual Presentation, Military Sensing Symposium Joint (BAMS and NSSDF) Conference	December 2021
· Virtual Poster Presentation, NSEP*	July 2020
· Poster Presentation, NAML	February 2020

* Received Best Presentation Award at NSEP for outstanding DoD research.

TEACHING

UMD Department of Computer Science

Graduate Teaching Assistant for CMSC 434: Introduction to HCI

College Park, MD

August 2023 - Present

- Taught the basics of Human-Computer Interaction (HCI) to over 350 students across 3 semesters
- Provided one-on-one iterative feedback to student teams developing an app prototype as part of the course project
- Worked with the instructor to create new problem contexts and questions for in-class exams